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Abstract

To correctly capture the behaviour of deforming material volumes in 3-D, the Los Alamos

unstructured grid code X3D has access to a variety of moving mesh algorithms. We

present two such algorithms which markedly di�er in their computational complexity.

The �rst algorithm, Moving Finite Elements for Surfaces, has only \2-D" computational

complexity, in that we only solve for interface motions and obtain volume point motions

through interpolation. The second algorithm, Minimum Error Gradient Adaption, has

\3-D" complexity, since the volume tetrahedral deformations must be computed. Nat-

urally, the 3-D complexity algorithm can model realistically a larger class of physical

problems than the lower complexity approach. We present examples in metallic grain

growth and semiconductor process modeling.
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Two 3-D Smoothing Techniques with Di�ering Computational Complexity

In this paper we demonstrate two di�erent smoothing techniques for 3-D unstructured

meshes which di�er in their computational complexity.

The �rst method, Moving Finite Elements for Surfaces1;2, moves the triangles of the

interfaces between 3-D volumes composed of tetrahedra. Tetrahedral vertices that do not

appear on an interface are moved by interpolation, while vertices appearing on interface

triangles are moved using an implicit method. We may thus say that, although volumes

are deformed by the moving grid, the computational complexity of the method is only

\2-D", not \3-D".

This type of method is suitable for physical problems where it is acceptable to model

material interfaces as discrete boundaries, with there being no need to accurately resolve

the sharp boundary layers that actually constitute these interfaces. An example of this

is movement of curved interfaces under mean curvature, as would occur in the growth of

metallic grains.3

* Work supported by the U.S. Department of Energy.
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The second method,Minimum Error Gradient Adaption (MEGA), is suitable for more

di�cult physical problems where volume �eld quantities need to be de�ned at all points

throughout the 3-D volume and/or detailed knowledge of boundary layers is important.

Here we deform our volume tetrahedral elements in such a manner as to e�ciently minimize

errors in the piecewise linear representation of the volume �eld over the tetrahedra.

We give illustrations of both approaches which we have implemented in the Los Alamos

multimaterial code X3D4;5.

\Moving Finite Elements for Surfaces" Applied to Metallic Grain Growth

We use Moving Finite Elements for Surfaces to move a multiply-connected network of

triangles for the modeling of deformation of 3-D grains. In metallic grain growth, interface

surfaces obey the simple equation

vn = K;

where vn is the normal velocity of the interface, and K is the local mean curvature. We

represent interfaces as parametrized surfaces:

u(s1; s2) =
X

nodes j

�j(s1; s2)uj:

Here, (s1; s2) is the surface parametrization, the sum is over interface nodes j, �j(s1; s2) is

the piecewise linear basis function which is unity at node j and zero at all other interface

nodes, and uj is the vector position of node j.

We have that

_u(s1; s2) =
X
j

�j(s1; s2) _uj ;

and

vn = _u(s1; s2) � n̂ (n̂ is local surface normal):

So

vn =
X
j

(n̂�j) � _uj :
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In e�ect, we have that the basis functions j for vn are ni�j , where n̂ = (n1; n2; n3). These

basis functions are discontinuous piecewise linear, since the ni are piecewise constant.

Moving Finite Elements for Surfaces minimizes

Z
(vn �K)2 dS

over all possible values for the derivatives _uj . (The integral is over the surface area of the

interfaces.) We thus obtain

0 =
1

2

@

@ _uij

Z
(vn �K)2 dS; i 2 f1; 2; 3g

=

Z
(vn �K)ni�j dS:

This leads to a system of 3N ODE's:

(ni�j ; nk�l) _u
k
l = (K;ni�j); or

C(y) _y = g(y);

where y is the 3N -vector containing the x, y, and z coordinates of all N nodes, C(y) is

the matrix of inner products of basis functions, and g(y) is the right-hand side of inner

products involving surface curvature.

Although g(y) = (K;ni�j) appears ill-de�ned for piecewise linear manifolds, being

the inner product of a distribution (K) with discontinuous functions (ni�j), we can replace

it by a well-de�ned sum of surface tensions over the triangular facets of the interfaces using

an integral identity for manifolds.1

The advantage of this method is that our PDE solver need only loop over the interface

triangles, and hence the complexity of the computation is \2-D", even though 3-D volumes

are deformed.
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In Figures 1-4 we show a time sequence for deformation of four metallic grains which

surround a fully-enclosed �fth grain. The central grain begins with a rough spherical shape

(Fig. 1), changes into a smooth, curved tetrahedron under the action of surface tension

(Figs. 2, 3), and disappears in �nite time, leaving the four surrounding grains (Fig. 4).

It should be noted that the outer surfaces of the surrounding grains are prevented from

collapsing because of a Dirichlet boundary condition.

Due to the low 2-D computational complexity of the calculation, this run took only

one-half hour on a workstation. For computation we used the Carlson/Miller 2-D Gradi-

ent Weighted Moving Finite Elements package (publicly available from carlson@math.

purdue.edu) which we have incorporated into our code X3D.

\MEGA" Applied to Oxidation/Di�usion of a Silicon Wafer

If the physical problem being simulated involves tracking gradients of volume concen-

tration �elds or interface-de�ning boundary layers, any smoothing scheme must involve

deformation of the volume elements, rather than just deformation of interface surface ele-

ments.

Minimum Error Gradient Adaption (MEGA) is a 3-D generalization of a 2-D adaptive

mesh smoothing scheme by Bank and Smith6. In Minimum Error Gradient Adaption, we

adjust the positions of the vertices so as to minimize the functional

F =

Z



jjr(u� uL)jj
2
dx: (1)

That is, the weighted L2 norm of the gradient of the error between the true solution

u(x; y; z) and its piecewise linear approximation uL(x; y; z) on each tetrahedron.

Minimizing the gradient of the error leads to optimal resolution of solution gradients

which can be crucial for correct calculation of di�usion pro�les. A secondary bene�t of

minimizing the error gradient is that it works to prevent \tet collapse" as the mesh moves.

This is because solution gradients are poorly represented on wafer-thin tetrahedra, and are

thus avoided when minimizing this functional.
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Since the exact solution u in (1) is generally unknown, the method is to approximate

the error by the six quadratic \bump functions" associated with the edges of each tetrahe-

dron. (The \bump" functions are the pairwise products of the four linear \hat" functions

associated with the four vertices of each tetrahedron.) Thus in practice, all that is needed

to evolve the mesh is an estimate of the error at each edge midpoint in the mesh. These

are usually obtained as a posteriori error estimates computed when numerically solving

di�erential equations.7

The example we give here involves the di�usion of boron in a semiconductor wafer,

occurring simultaneously with deformation of the wafer by an oxidation process. For this

example, we calculated time-dependent analytic di�usion pro�les and boundary deforma-

tions that would mimic the results one would obtain if one actually solved the correct

equations for boron di�usion and boundary motion. Using this analytic model, we com-

puted error estimates at the edge midpoints in the mesh, and then we performed MEGA

using these error estimates. Thus what we tested in this example was not the correctness

of a PDE solver, but the feasibility of using the MEGA approach to adaptively smooth

the tetrahedral mesh when good error estimates are available.

In Figures 5-8 we show a run with 9765 nodes in which the mesh is initially con-

centrated in a \tri-band" structure to minimize the gradient of the error of the boron

concentration �eld. Not seen in this view, the concentration of the tetrahedral mesh by

MEGA extends into the wafer and involves a concerted movement of tetrahedra throughout

the volume.

In Figure 6, the oxidation front has deformed the upper surface of the wafer and

MEGA has allowed the grid to \deconcentrate" due to the di�usion of the boron. Figures

7-8 show how the initially concentrated grid of < 10; 000 nodes produces better resolution

of the boron �eld than a uniform hexahedral grid of 206,500 nodes.

Conclusions

In the most general case of deforming volumes and volume concentration �elds, one

can obtain a large savings in time and space computational complexity by employing a
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3-D mesh smoothing scheme such as MEGA. If the physical problem is simpler, in that

local volume concentrations and interface-de�ning boundary layers need not be known

with precision, then one can achieve an even greater savings in time by performing essen-

tially a 2-D calculation using a method such as Moving Finite Elements for Surfaces. We

accommodate both types of schemes in the versatile Los Alamos unstructured grid code

X3D.
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Fig. 1:  Exploded view of initial
configuration of 4 grains surrounding 
a central grain.  Interfaces are jagged.  

Fig. 2:  Configuration at t = 0.1 after
evolution by surface tension  (using 
Moving Finite Elements for Surfaces).  
Interfaces are smoothed;  central grain
has  become a curved tetrahedron.

 Fig. 3:  Configuration at t = 0.4.
 Central grain is maintaining its shape,  
 but shrinking.
                   

  Fig. 4:  Configuration at t = 0.6.
  Central grain has totally collapsed,   
  leaving 4 grains with planar interfaces.
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Figure 5:  MEGA smoothed grid 
                  with 9765 nodes at t=0.

 Figure 6:  Grid at t=8000 showing
                   boron contours.

 Figure 7:  MEGA smoothed grid 
                   with 9765 nodes at t=0.
                   (Close−up showing 
                   boron contours.)

  Figure 8:  Same close−up as Fig. 7,
                    but using 206,500 node
                    uniform hexahedral grid.
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